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Abstract—Pick up of featureless cylinders using deep learning
and assembly using combination of visual and force feedback is
discussed in this article. Object detection using YOLO technique
is used to detect the object for robotic pick up. It was possible to
identify the object even in cluttered environments. The assembly
of the cylindrical object in a hole with tight clearance is also
discussed. The method involves hybrid control i.e., position
control along the assembly plane and force control along the
direction of normal to the plane. The method is implemented
using KUKA iiwa robot and the results are presented.

Index Terms—robotics, object detection, pose measurement,
assembly, vision, deep learning, localization

I. INTRODUCTION

Manipulators are widely used to achieve repetitive common
assembly tasks in industry, due to their speed and repeatabil-
ity [1]. However, the less the clearance between the parts that
should be assembled the more the task becomes challenging
to be robotized. Peg-in-hole assembly represents a proper
example of these challenging tasks where in some cases the
clearance between the peg and the hole is less than the robot’s
accuracy.

Many approaches have been used to solve this [2]. Control
strategies that have been used for this task can be classified
into three main categories: position control, force control, and
hybrid position/force control. Vision sensor is a proper and af-
fordable solution for position control to localize the pose of the
hole and complete the assembly task. Korta et al. introduced
a vision-based approach for robotic arm to achieve electronics
circuits assembly task [3]. In [4], researchers proposed a
vision-guidance method for the Baxter robot for cylindrical
peg-in-hole assembly. Triyonoputro et al. [5] developed a new
method based on deep learning and multi-view images for peg-
in-hole assembly. The trained deep neural network predicts the
quadrant of the hole, and by iterative visual servoing the robot
moves the peg towards the hole step by step. In force control,
the position of the hole is predefined. However, since the
clearance is smaller than the robot accuracy, force perception
is used to localize the hole for these small errors. Spiral search
that was proposed by [6] and [7] is one of the most popular
blind approaches that use only force perception for localization
in small clearance. In this class, the force oscillations, that

occur due to a partial engagement between the peg and the
hole, are analyzed to overcome the positioning inaccuracy
and complete the assembly. In the vision-based systems, the
robot can detect the hole pose. However, the kinematics of
the robot [8], uncertainty in estimating camera parameters [9],
affect the robustness of the process, and cause a failure in
obtaining the accurate position during assembly. On the other
hand, force control provides a feasible solution for the small
clearance and also prevent excessive interaction forces during
the assembly. However, it fails in dynamic environment, where
the uncertainty in hole and the peg poses may change within
larger range. The hybrid position/force control methods utilize
both vision and force sensors which offers more reliable
and robust systems. Abdullah et al. [10] suggested a new
strategy for the peg-in-hole assembly that mimics the human
behavior. In their strategy, the robot firstly, locates the hole
position by a camera. Then, it proceed with accomplishing
the task depending on the interaction forces measured by a
6-DOF force/torque (F/T) sensor. Another strategy based on
vision/force guidance was introduced in [11]. In this research,
a dual-arm Baxter robot has been used to achieve the peg-in-
hole for a clearance 0.5 mm. The vision feedback is used for
the position adjustment between the peg and the hole, while
the orientation adjustment is held by the F/T sensor. In regard
to the peg grasping, the use of camera and computer vision
techniques allow the robot to detect the the peg pose and grasp
it.

Conventional object detection methods depend on the
shape [12], color [13], or edge [14] of the object. These
methods work efficiently in where there is no significant fluc-
tuation in the environment characteristics, like the illumination
and the number of existing objects. In cluttered environments,
the grasping task is not only a matter of detection, but also
robot should recognize the objects within the environment
and pick up the desired one. Machine Learning techniques,
especially Deep learning, proved their superiority over the
conventional object detection ones, and showed a reliable
performance for robot grasping in the dynamic and cluttered
environments [15]–[17]. Sometimes the task makes it nec-
essary to use point cloud data as well [18], which increase
the computation load, total cost of the system and processing
time. Therefore the use of minimum number of images from
a single camera is more desirable. Most of the conventional978-1-6654-2407-3/21/$31.00 ©2021 IEEE



approaches uses objects with textures or features that can be
tracked, however this is not true for objects in industry [19].

In this paper, we propose a new approach to robotize the
peg-in-hole assembly using a serial manipulator equipped with
an eye-on-hand camera and F/T sensor. The proposed approach
addresses the challenges in the both parts of the peg-in-hole
task: the pick-up of a featureless object from a cluttered
environment, and assembly with a clearance less than the
robot accuracy. We implemented a deep learning technique
to detect and recognize a cylindrical object (peg) randomly
located among other objects. In addition to detect the peg,
visual servoing is used to detect the hole in three stages i.e.,
rough, fine and continuous modes of localization. F/T sensor
measurements are considered to maintain the interaction forces
during the assembly, and to adjust the camera orientation in
case the hole is not visible after. The main contributions of
this paper are:

1) Deep learning based detection of black featureless ob-
ject;

2) assembly of a cylindrical object using hybrid control i.e.,
position and force control in a hole with low clearance;
and practical implementation of pick up and assembly
using KUKA iiwa robot.

The remainder of this paper is organized as follows: In section
II, we discuss the object picking-up part of the method, includ-
ing the selected deep learning model and the steps of preparing
the dataset and training the model. The assembly part of
the method and its three localization stages are presented in
Section III. Experiments results are discussed in Section IV.
Finally, Section V concludes the the paper.

II. OBJECT PICKING-UP

In robot visual perception, object detection in a cluttered
environment is considered as a challenging problem by the
computer vision community [20]. Redmon and Farhadi de-
veloped a real-time object detection method named YOLO
based on Convolutional Neural Networks [21]. In this work,
we utilize YOLOv5, the up-to-date version of YOLO [22].
Fig. 1 shows the cylindrical object, which the robot should
detect and grasp, along with two other random objects (cubes).

Fig. 1. The object of interest, a black featureless cylindrical object, along
with two other objects, blue and red cubes.

A. Training the Model

Multiple (75) images were captured in various
configurations for the objects including those in which
the objects are occluded. Fig. 2 shows the labeled images.
Then, they were re-oriented and resized to 640x640 to suit

Fig. 2. Labeled training images.

the model requirements. In addition, some augmentation
are applied such as vertical and horizontal flip, rotations,
cropping, skewing, illumination, and adding noise. These
augmentations exposes the model to a variety in the dataset,
thus makes the model more generalized. The model is trained
for 300 epochs considering batch size 64, image size 640,
and default pre-trained weights. In the mean time, the training
process was being monitored online using weights and biases
platform to visualize the losses and overall performance of
the model [23]. Fig. 3 presents the recall and precision of
the trained model. More information of the trained model
are available at https://wandb.ai/mostafa metwally/yolov5-
simple3d-shapes/reports/NIR-Conference-YOLO5-v4-on-
Simple-shapes-dataset--Vmlldzo0OTA4OTE

B. Model Implementation

The trained model is implemented in the task pipeline as
the first stage. Using an RGB camera, the model detects and
localizes the black cylinder that may be arbitrary located
among a bunch of other objects. Then, it will return the
image coordinates of the cylinder position which is further
transformed to the robot base coordinates using the camera
calibration data. The robot is commanded to move to the
estimated position of the cylinder to be grasped.

III. ASSEMBLY

After the cylinder is picked up, the robot moves to the
assembly area. The position of the hole is then determined
using sensor information. The robot will accomplish the final
localization and assembly using visual and force servoing. Due
to the inaccuracies in the camera calibration, robot kinematics,
etc., this was done in three main stages:

1) Rough localization wherein the hole center position is
detected when the robot is over the assembly region.

2) Fine localization using sensor information after position-
ing the robot closer to the plane of assembly according
to the rough estimate obtained earlier.



(a) Recall

(b) Precision

Fig. 3. Model evaluation metrics: recall and precision of the trained YOLO
model

3) Continuous localization that involves contact with the as-
sembly plane and obtaining continuous visual feedback
while in force control mode.

Once the peg engages with the plane of the hole, an Image
Based Visual Servoing Approach as shown in Fig. 4 is applied.
Note that the hole is partially occluded by the peg in this
situation and only a small region of the hole may be detected.
Therefore at this stage only the edge of the hole is detected
within a smaller region of interest. A difference of Gaussian
image is obtained for the region of interest. Later the edge
is located in this image. Depending upon the edge direction,
the direction of movement for engaging with the hole is
determined. Figure 5 shows the region of interest, Difference
of Gaussian images and the calculated direction. There exists a
possibility that the hole position is completely occluded by the
peg. In such a case the force information is used to re-orient
the peg and restart the hole search process. The information
about this is added in Appendix A. A successful localization is
detected by movement of the peg beyond the plane of assembly
and decrease in the force measured in the direction of the
normal to plane.

IV. EXPERIMENTS RESULTS

A. System Setup

The system used in the experiments is shown in Fig. 6.
We used KUKA LBR iiwa 14 equipped with an RGB camera
of resolution 1280×480 mounted on the robot’s end-effector.
KUKA iiwa robot has inherent torque sensors mounted on its
joints, and it is possible to make measurement in any of the

coordinate frames of the robot. F/T measurements at the end-
effector are obtained from the robot’s controller. The robot
is connected to the computer via an Ethernet interface. The
pipeline of the robot is written in C++ in Robot Operating
System (ROS) [24] and based on ROS metapackage for the
KUKA LBR iiwa developed by Hennersperger et al. [25]. The
pseudocode of the pipeline is presented in Algorithm 1.

TABLE I
RESULTS OF HAND EYE CALIBRATION FOR IMAGES CAPTURED FROM 8

DIFFERENT POSES

Position (mm) Orientation (rad)
Mean -6.6 51.8 -29.4 0.006 -0.005 3.1
STD 2.6 1.6 1.1 0.003 0.005 0.0009

Algorithm 1: Pseudocode of the system pipeline

Data: Intrinsic Matrix and Hand-eye calibration data.
Zg: Z coordinate of the gripper.
Zt: Z coordinate of assembly plane.
Fz: external force acting on the end-effector along Z axis.
Ft: the allowable engagement force.
pos1: position over object for detecting the pose.
pos2: position over hole for detecting hole position.

begin
Initialization;
Move to pos1;
Localize the Peg using YOLO;
Move to the detected XY postion;
while |Fz| > Ft do

Move downwards along Z;
end
Pick up the Peg;
Move to pos2;
Do Rough localization for the hole position;
Move Closer and approach the detected XY position;
Capture image and do Fine localization;
Align in XY plane with estimated position;
while |Fz| < Ft do

Reduce Zg ;
end
Measure Zt;
while |Fz| ≥ Ft do

while Hole is not detected in the image do
Measure moments mx and my;
Rotate the camera around Z according to
tan−1 −mx

my
;

end
Detect the hole edge and measure the furthest point of the

center of the Peg;
Move, by steps, towards the direction of the furthest point

of the hole edge;
while |Fz| < Ft do

Move downwards by dz;
if Zg < Zt then

break;
end

end
Assemble the peg;

end
end
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(a) Region of interest (b) Difference of Gaussian

(c) Detected direction

Fig. 5. Illustration of the IBVS method

Fig. 6. System Setup: KUKA iiwa robot, equipped with two-jaw gripper and
an RGB camera at its flange. Illumination source is added to enhance the
detection process of the peg and the hole.

B. Calibration

Camera calibration and image processing was done in
Python using OpenCV libraries [26]. The calibrated camera
parameters were used for the hand-eye calibration. The cali-
bration method proposed in [27] was used to achieve the hand-
eye calibration of the camera. Fig. 7 shows the calibration grid

Fig. 7. Hand-eye calibration with two grids attached perpendicular to each
other.

(a) Pose 1: horizontal (b) Pose 1: Perp.

(c) Pose 2: horiz. (d) Pose 2: Perp.

(e) Pose 3: horiz. (f) Pose 1: Perp.

(g) Pose 1: horiz. (h) Pose 1: Perp.

Fig. 8. Sample images used for hand-eye calibration, (a) to (f): three sample
poses. (g) to (h): projected points on (a) and (b), respectively.



as well as the camera mounted on the robot end-effector. The
robot kinematics was used to define a coordinate frame on
the calibration grid. Using the relative pose between the robot
and the calibration gird as well as the pose of the robot-end
effector the hand-eye relation was estimated. Different random
poses of the robot such that the calibration grid was visible
in the camera to verify the estimate obtained in this fashion.
The results of hand-eye estimate obtained for different poses
of the camera are shown in Table I. The sample images used
for calibration are shown in Fig. 8.

C. Results

Screenshot samples of the deep learning output detecting the
object of interest within a cluttered environment are shown in
Fig. 9. The model was able to detect the object in different
positions and orientation for the robot. The obtained position
of the object is commanded to the robot to be grasped.
Fig. 10 presents the rough and fine localization of the hole in
the assembly stage. The robot detects the closest hole in the
rough localization. Then, it approaches the detected position
and re-localizes the circle. Next step, the robot moves towards
the assembly plane. Once the collision with the assembly plane
occurs, the IBVS method starts searching the hole edge and
commands the robot to move, in steps, towards the farthest
point of the edge of the hole. Fig. 11 illustrates how the robot
approaches the hole in this phase of the assembly stage. Video
of process can be accessed from video.

Fig. 9. Samples of the deep learning model output.

V. CONCLUSION

In this paper, the problem of fully robotizing the peg-in-
hole task starting from picking the peg to placing it into
the hole with a tight clearance is addressed. The proposed
approach has two parts. Initially a deep learning model is
used to detect the peg. It was possible to localize the peg

(a) Rough Localization:
over the assembly region,
closest hole is detected

(b) Fine Localization:
aligns with the detected
hole position and re-
localizes

Fig. 10. Camera output of the system during the rough and fine localization
phases of assembly

(a) step 1: peg engaged
with the assembly plane,
the direction towards the
hole is detected.

(b) step 2: re-detect and
approach towards the hole.

(c) step 3: re-detect and ap-
proach towards the hole.

(d) step 4: the peg is com-
pletely over the hole, and
the assembly task is ac-
complished.

Fig. 11. Image during the rough and fine localization phases of assembly

even in cluttered environment with multiple other objects. The
next stage is assembly in a hole with tight clearance. The
inherent positioning accuracy of a robot is lesser than the
clearance commonly encountered in assembly tasks. Therefore
the assembly part consists of three main stages to detect the
hole position namely rough, fine, and continuous localization
in hybrid control mode. Visual servoing is used for detection
in all phases of the assembly one. F/T measurements were
considered to maintain the interaction forces between the robot
and the environment during the task and to reorient the camera
in case the hole is not visible in the continuous localization
stage based on F/T measurements. The proposed method has
been implemented on KUKA iiwa robot and the details of the
experimental results are presented.

APPENDIX

Exploiting F/T measurements to re-orient the camera

In some cases the robot may approach the assembly plane in
a way that the peg is partially at the hole, Fig. 12. However, the
hole edge is not visible to the camera. There is an equilibrium



due to the presence of an action and reaction force. The force
fA is applied by the robot on the planar surface on which
the holes are located. Whereas, fR is the reaction force. The
action force can be assumed to be applied along the Z axis of
the frame T. The corresponding reaction force can be assumed
to act at point R. If the position of the tool and F/T sensor
coordinates are not known, the vector pOT

is to be identified.
Note that, pR is the displacement in frame T. From Fig. 12,
the following may be interpreted:

r = pOT
+ pR (1)

The moment about OT due to fR can be expressed as

m = r × fR (2)

where both fR and m can be measured. Note that Z axis of
the F/T measurement frame is aligned with the axis of the peg
along which force is applied. It can then be considered that the
moment about Z axis of the sensor vanishes i.e mz u 0. Also,
fx u 0 and fy u 0, which gives the following expression:[

mx

my

]
=

[
0 fRz

−fRy

−fRz 0 fRx

]
pR (3)

Thus, the following relation is obtained:

pR =

[
my/fRz

−mx/fRz

]
(4)

It can also be inferred that the direction of the hole is
tan−1(−mx

my
). Once the estimate of pR is obtained, it can be

used for localizing the hole and for orienting the camera in
case the hole position is not visible in the field of view.

Fig. 12. Schematic of robotic peg-in-hole assembly.
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